
CS 51590 Exam/Homework Spring 2020

The following questions ask you to analyze some code fragments and to write some
code. When you analyze some code, your analysis should be written in complete sentences
organized into paragraphs. Do not write sentence fragments and do not write the most terse
answer that you can think of (even if it is essentially correct). You are being graded on your
ability to communicate, not just on your ability to arrive at correct solutions.

When you write code, write complete compilable, runnable programs. Your programs
won’t really do anything. They should just print output messages that indicate which
function is being called.

Write your answers neatly using a computer document format. You can write your
answers in a plain text file, a MS Word document, an HTML page, or even in LATEX. Put
your written answers and your compilable code in a zip file and submit your zip file to me
using Blackboard.

Each person should work on this exam by themselves. If you have any questions about
the exam, feel free to send me an e-mail.

This exam should be turned in to Blackboard by Friday, May 8.

1. The following code outlines a synchronization pattern. Assume that the two threads
begin at the same time, each thread runs on its own core, and there are no other (sig-
nificant) threads running on the cores.

void *thread1(void *vargp)

{ while(1)

{ printf("Doing Calculation A.");

// do Calculation A

sem_post(&semaphore1);

printf("Doing Calculation B.");

// do Calculation B

sem_post(&semaphore2);

sem_wait(&semaphore3);

}

}

void *thread2(void *vargp)

{ while(1)

{ sem_wait(&semaphore1);

printf("Doing Calculation C.");

// do Calculation C

sem_post(&semaphore3);

sem_wait(&semaphore2);

}

}

sem_t semaphore1, semaphore2, semaphore3;

int main()

{ pthread_t tid;

sem_init(&semaphore1, 0, 0); // not signaled

sem_init(&semaphore2, 0, 0); // not signaled

sem_init(&semaphore3, 0, 0); // not signaled

pthread_create(&tid, NULL, thread1, NULL);

pthread_create(&tid, NULL, thread2, NULL);

while(1){ Sleep(1000); }

}

(a) (15 points) In what way are the two threads synchronized? Give your answer in
terms of how the three calculations, A, B, and C, are ordered in time. Explain
carefully what role each of the three semaphores plays in the synchronization.

Solution:

(b) (15 points) Rewrite this program using condition variables.

Solution:

2. Suppose that we have five C functions that together solve some problem. Suppose these
functions, labeled A through E, depend on each other according to the following graph.

A B C

D

E

Each edge of the graph denotes a dependency between two of these functions. For
example, the edge from node B to node D means that functionB must be called, and
must return, before functionD can be called.

(a) (10 points) What is wrong with this sketch of a C program that uses Pthreads to
execute the five functions in parallel in a way that adheres to the above dependency
graph? How would you improve this program (but still use five worker threads and
only the Pthreads functions pthread create() and pthread join())?

void *threadA(void *vargp){ functionA(); }

void *threadB(void *vargp){ functionB(); }

void *threadC(void *vargp){ functionC(); }

void *threadD(void *vargp){ functionD(); }

void *threadE(void *vargp){ functionE(); }

int main()

{ pthread_t tidA, tidB, tidC, tidD, tidE;

pthread_create(&tidB, NULL, threadB, NULL);

pthread_create(&tidC, NULL, threadC, NULL);

pthread_join(tidB, NULL);

pthread_join(tidC, NULL);

pthread_create(&tidA, NULL, threadA, NULL);

pthread_create(&tidD, NULL, threadD, NULL);

pthread_join(tidA, NULL);

pthread_join(tidD, NULL);

pthread_create(&tidE, NULL, threadE, NULL);

pthread_join(tidE, NULL);

}

Solution:

(b) (10 points) Write a Pthreads program to execute the above five functions in a
way that is maximally parallel (i.e., always runs as many threads in parallel as
possible), adheres to the above dependency graph, and uses the minimal number of
threads possible (including the main() thread). Your solution should still use only
pthread join() for synchronization.

Solution:

(c) (10 points) Write a Java program that uses Fork-Join to execute the above five
functions in a way that adheres to the above dependency graph, is maximally par-
allel, and uses the minimum number of threads.

Assume that the five functions are static methods in a class called MyTasks.java.
Write a main() method and whatever classes that you need that extend
java.util.concurrent.RecursiveAction.

Solution:

3. (15 points) Suppose that we have six C functions

void functionA(void); void functionD(void);

void functionB(void); void functionE(void);

void functionC(void); void functionF(void);

that together solve some problem. Suppose these function depend on each other accord-
ing to the following dependency graph.

A B C

D

F

E

Write either a C program that uses Pthreads or a Java program to execute the above
six functions in a way that is maximally parallel, but adheres to the above dependency
graph. Give a written explanation of how your code solves the problem. You can use
any synchronization mechanism you want.

Solution:

4. Suppose we wanted to implement our own mutex class in Java.

class MyMutex {

public Thread owner = null;

public synchronized void lock() throws InterruptedException {

if (this.owner != null)

this.wait();

this.owner = Thread.currentThread();

}

public void unlock() {

if (this.owner == Thread.currentThread()) {

this.notify();

this.owner = null;

} else

throw new IllegalStateException();

}

}

(a) (10 points) Correct three mistakes in this implementation of a mutex class. Explain
the reason for each of your corrections. In particular, what could go wrong if each
particular correction isn’t made? (You can ignore the throws InterruptedException.
It is needed for the code to compile.)

Solution:

(b) (5 points) The documentation for pthread.h

http://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread_mutex_lock.html

says that the pthread library implements several kinds of mutexes, PTHREAD MUTEX NORMAL,
PTHREAD MUTEX ERRORCHECK, and PTHREAD MUTEX RECURSIVE. Use the Java docu-
mentation

https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#notify--

https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#wait--

to determine which of these kinds of pthread mutexes our repaired Java mutex is
most similar to with respect to the lock() method. Explain why.

Solution:

(c) (5 points) With respect to the unlock() method, which of the above kinds of
pthread mutexes is our repaired Java mutex most similar to? Explain why.

Solution:

(d) (5 points) The proper way to use one of our MyMutex objects looks like this.

mutex.lock();

// do something

mutex.unlock();

Explain carefully what would happen, and why, if you used one of our corrected
MyMutex objects like this.

mutex.lock();

// do something

mutex.notify();

Solution:

